Year 6

Number Awareness Week 5 Negative Numbers

Prompts

Look at the sequence of 5 prompts on the following slides

The sequence is designed to prompt Y6 to develop number awareness, and fluency in understanding of negative numbers.

Review the 5 sessions, considering:

- Variation: how do the different activities harness variation, and how do they relate to each other and progress. What decisions have been made, and how might they be adapted?
- Represetation: think carefully about the different decisions we make when using number lines. What kind of 'fluency' is required for a teacher or pupil to use a number line effectively.
- Mathematical thinking: where do these activities harness mathematical thinking to develop fluency, and vice versa.
- Connections: how do these activities connect different skills and knowledge?
- Memory: What is the relationship between memory and reasoning in these activities. What would we hope the students to remember?

Week 5 Day 1

Where is ...

Count from left to right and right to left on each number line

Week 5 Day 2

Half-way between

Week 5 Day 4

Coordinates

Decide if each coordinate is inside or outside the rectangle

Coordinate	Inside?	Outside?
(10, 4)		
(-4, -10)		
(-10, 4)		
(-10, -4)		
(-10, -10)		

Conjectures

Negative numbers do not REALLY exist

0 is a positive number

- 4 is an even number

Decide if you agree or disagree.

What reasons would you give?

-1000 is a bigger number than 999

If you're on 0, then jump back 5, and another 5, and another 5 you land on – 15, so 3 lots of –5 is –15

If you add a number to a negative, you always get a negative answer

Fluency

Look at the following selection.

These are from the CODE website:

http://www.codemathshub.org.uk/lockdown-resources/

They are designed to prompt fluency alongside mathematical thinking.

Consider how they could be used to develop Teaching for Mastery across your school:

- Variation:
- Represetation:
- Mathematical thinking:
- Connections/coherence

Roll 5 dice. Can you score 17?

Patterns

Use 17 sticks.

Can you make a triangle using all 17 sticks?

Use 17 sticks or twigs.

How many different shapes can you make at once?

17 is 10 + ...

$$17 = 10 + 2 + \bigcirc$$

Complete 17 on each set of dice.

Then work out bonds to 17.

Also solve subtractions

Key factors of the week

Learn these factor triangles.

Match each triangle to a diagram.

Seeing Squares!

This proves 20 is a square number.

have been removed. What squares?

see now?

What is wrong with this idea?

99

This week we learned about two numbers next to each other: 48 and 49

$$7 \times 7 = 49$$

$$6 \times 8 = 48$$

Can you see how to turn 7×7 into 6×8?

Can you see why 6×8 is one less than 7×7 ?

Number 42

Further development

- Which aspects of teaching fluency do you want to develop more?
 - Speed
 - Accuracy
 - Meta-cognition
 - Rehearsal
 - Reasoning